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Convergence of Singular Difference Approximations 
for the Discrete Ordinate Equations in x-y Geometry 

By N. K. Madsen 

Abstract. The solutions to two well-known finite difference approximations are shown 
to converge to the solution of the discrete ordinate equations which are an approximation 
to the linear Boltzmann equation. These difference schemes are the diamond approximation 
of Carlson, and the central difference approximation. These schemes are known to give 
singular systems of algebraic equations in certain cases. Despite this singularity, convergence 
is shown for all cases when solutions exist. 

1. Introduction. In this paper, we analyze some of the characteristics of certain 
numerical approximations to the time-independent one-velocity linear Boltzmann 
equation which is commonly known as the neutron transport equation. The transport 
equation is an integro-differential equation whose characteristics and derivation 
may be found in [1]. 

In practical applications, it is rare to encounter a neutron transport problem that 
can be solved exactly. Therefore, many different numerical techniques have been 
developed to approximate the solution of the transport equation. Our attention in 
this paper will be focused on one method, the method of discrete ordinates [1]. The 
discrete ordinate approximation was first introduced by Wick [2] and Chandrasekhar 
[3]. Discretization error estimates for the discrete ordinate approximation are found in 
[4], [5], [6]. 

After the discrete ordinate approximation is made, there remains a coupled system 
of partial differential equations. Again, in most practical applications it is unusual 
to be able to solve these equations explicitly. Various finite difference methods have 
been used to approximate the solution of the discrete ordinate equations and, in this 
paper, we concern ourselves primarily with the diamond difference approximation 
of Carlson [7]. The diamond approximation is a second order scheme and is con- 
sidered for vacuum, reflecting, and periodic boundary conditions. 

If a finite difference formulation leads to a nonsingular system of algebraic equa- 
tions, then the existence of a unique solution is guaranteed. However, if the difference 
formulation leads to a singular system, then a solution need not be unique and may 
not even exist. It is known [8] that for vacuum boundary conditions the diamond 
scheme gives a nonsingular system of equations. For periodic boundary conditions 
the diamond scheme gives a singular or nonsingular system depending on the partic- 
ular mesh chosen, [8]. Finally, for reflecting conditions, the diamond scheme always 
leads to a singular system [9]. For these last two singular cases, it is known, however, 
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that the singular system always has a solution which, in fact, is unique in a certain 
sense, [81, [9]. 

In this paper, we show that for any of the above boundary conditions (including 
the singular cases), the solution of the diamond difference equations converges to 
the solution of the discrete ordinate equations. The convergence is shown in two 
norms: a discrete L, norm, and a maximum norm. The convergence rate is 0(h2) for 
the discrete L4 norm, where h is the maximum mesh spacing. These results answer 
some of the questions raised by Gelbard et al. in [10]. We also show how these same 
results can be obtained for the central difference approximation considered in [9]. 

2. Diamond Difference Approximation. The one-velocity form of the discrete 
ordinate equations in x-y geometry may be written as 

Om M a d o Tm n2 menon m 

(1) ax ~+ Qv dY + 
' - 

L w: S. m = 1, 2,9+,a ax ayn-1 

where 
4,m is the flux in direction Qm, 

T is the total cross section, 
Sm is the source term, 
Wn represents the quadrature weights, 
2^ n is the scattering cross section from direction a to direction O", 
Qu Qm, Om are the direction cosines of Qnm 

r is the number of discrete directions used. 
Equations (1) are the two-dimensional discrete ordinate equations and will be 

considered in the domain D defined by 0 < x : LX, 0 $ y _ L4. The Eqs. (1) will be 
subject to certain conditions prescribed on OD, the boundary of D. The vacuum con- 
ditions are: 

(2) If (x, y) E a D and amn n < 0, where n is an outward drawn normal at 

(x, y), then qn(x, y) = 0. 

The periodic conditions are: 

(3) On(,?> y) = ,?>n(L. y), 0 :! y < LVS m = 1, 2, m, T. 

,01(X, 0) = 01 (X, Ly), 0 -< X < LX,, m - 1, 2, **,T 

Kellogg [11] has shown that reflecting boundary conditions are really a subclass 
of the periodic conditions, so vacuum and periodic boundary conditions are all 
that need be considered (the results of this paper can be directly verified for the 
reflecting conditions using exactly the same techniques). 

To approximate the solution of Eqs. (1), we first impose a rectangular mesh on D 
with the lines 

X = XO, X = X1, , X = XI, O = xO < x1 < ... < x1 = L., 

Y = YO, Y Yi YY = yJ O = yo < y < .. < Y = L,. 

The mesh spacings Axi x, - xi,1 and Ayj = y - yi- are not assumed uniform. 
We introduce the mesh variables 
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Hidj, I _ i < I, O< j < J, I < m < T. 

These variables are associated with the imposed mesh as shown in Fig. 1. The 
discrete ordinate equations for the (i, j) mesh box are now approximated by the 
equations 

Srn(Vi al~v-l~i) + arS(H Hicy, ) 

+ V<1No - i = 
n-1 

(5) Nn= V + Vm1,;) = 4(Hti + H% ), 

where pT j is and S i, are the respective values of AT, cmns and S' at the center 
of the (i, j) mesh box. 

jm 

Yf -1 1,j-1 X 

FIGURE 1. Unknowns for the Diamond Approximation 

The vacuum boundary conditions are approximated by 

VO i = O, 1 < j < J, for all m such that m > 4, 

(6) V1,,s = O. 1 < _ J, for all m such that X < ?, 

Hm = 0, 1 _ i _ I, for all m such that Q > 0, 

H,= 0, 1 < i < I, for all m such that O' < ?, 

and the periodic boundary conditions are approximated by 

VO i= Fri, I < j < J. I < m < ar, 

HmO= HmJ < i < I, I < m < T. 

Equations (4) and (5), together with boundary conditions (6) or (7), define the diamond 
difference approximation to the discrete ordinate equations with vacuum or periodic 
boundary conditions, respectively. 
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It is convenient to define 

(8) = - s - Ewn 
n-1 

For the remainder of the paper, we make the following assumptions: 

(9a) wi = 4xr and wm > O for all m, 
mr-1 

(9b) 2a, > Zo > 0 for all i, j, m, 

(9c) 2.,n = 2;1m for all i, J, m, n, 

(9d) 2i"'' > 0 for all i, j, m, n. 

If = 0' 4, , 4o) is a vector whose components are functions of the variables 
x and y which have partial derivatives with respect to x and y up to order p, then 
we define 

I I k = max max sup 
ali 

, I < k p, 
m I a I Sk (xr, v) ED ax al 

ya2 

where a = (al, a2), jal = a1 + a2. 

For any mesh function N = (N", ), we define the maximum norm of N as 

jjNjj. = max JN~ij, 

and the discrete L2 norm as 
_ _ 1~~~~~~~/2 

= [EN Ax, AyfW"(N f )2 

With the preceding definitions and assumptions we can prove the following theorem. 
THEOREM 1 (BASIC INEQUALITY). If N = (N.,i), V = (Vi ), H = (Hi), and 

S = (S.,) are vectors whose components satisfy (4), (5), and (6) or (7), then 

IINiI I fISfI. 

Proof. Multiplying both sides of Eq. (4) by wmN,1 Axi Ay, and summing over 
all appropriate i, j, and m, we find that 

d m Ay wmNm ( -m _ - m 1, ) + E W- Ax;wmNisi(H i1 - H7 j-1) 
i,jf,m isi~m 

(10) +ZAx, Ay, Er w(Nmf)N - E WnW.2:t" N" M Nr.I] 

= s E i "Ii M'NiS"i 
- Ai , Ay wmmN"iS. 

Using (5) and (6) or (7), one can show that the first two summations appearing in 
(10) are nonnegative. Using (8), we may rewrite the third summation in (10) as 

(11) E Ax, AY i W (Ni i) + E Axi ayjww2 ( - Nn )Nm i,} m tsu ,mn 

Using (9c), we rewrite the second sum in (11) as 
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2 AXi AY;W'W'2;. ,(N7S - No )N" 
j t,m,n 

+ a E i Ax, WnWm2,, -IS 
*i, i , m ,N 

- 2 E Ax, Ayjwmw"2" i(N~1 - - 

which is, by (9d), nonnegative. Now, combining these results, from (10), we see that 

EAX; AYiw"Za',"(N'im )2 < AxSi. AyiwmNmi 
"I 

,j~~~~~m' ,i 
=i~ 

Using Schwarz's inequality and (9b), we have 

20 JIN J2 < JINJ JISJJ or JINJJ :0 JiSJJ. 

We remark that if (N, V, H) is a solution of the diamond approximation, then 
the Basic Inequality establishes the uniqueness of N. 

3. Convergence of the Method. If q = (q1, k2, * , * 7) is the solution to the 
discrete ordinate equations, and if N = (N"m ), V = (V:, ), and H = (H.i) are the 
solutions to the diamond scheme, then we define the error vector e = (en, ) by 

e"= 4(xi - 2 Ax, y, - 2 Ay) - N1 . 

Using the Basic Inequality, Taylor's theorem, and a simple averaging technique, the 
convergence of the diamond scheme is now easily demonstrated. 

THEOREM 2. Let p = (1 ,2, .. *. , * r) be in C2[D] and have bounded third partial 
derivatives. If assumptions (9) are satisfied, then there exists a positive constant C 
independentofhando suchthatljell ? Cllqll,-h2, where h = max.,, (Axi, Ayi). 

Proof. Using q = (41, 42, O ' e 7) we define the averaged vectors 0Z = (5V f) 
U-= ('UT )and3C (3C' j)by 

A = i[4,(Xi, Y,) + 0k"%(Xi, yi-1) + O (Xi_,, y,) + O (Xi-1, Y.-1)], 

=Sm J[4,0(Xi, y,) + q5m(Xi, ye-)J, 

XiC = 4[4"(x,, yi) + ?"'(Xi11, Y01). 

We remark that these vectors satisfy Eq. (5) exactly. Defining a vector el = - N,, 
we see that the vector e - el has components 0,m(x, - Ax,, yj - iAy) - 0Z ,i and 
hence, by Taylor's theorem, 

le -ellj ? C' 110 1 12.h 

Therefore, it will suffice to estimate Ile, 1. Substituting a, V, JC, and N, V, H into 
(4) and (5), subtracting the two respective resulting sets of equations, and applying 
the Basic Inequality shows that 

llelll < 
2; 11811, 

where & satisfies II1 I _ C'lj 10 1, h. The last inequality is obtained by several ap- 
plications of Taylor's theorem. Therefore, there exists a constant C such that 
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tell _ C l14l3 h2. 

COROLLARY. Let h' = mini i(Axi), Ayj), h = maxi, j(Axi, Ayj), and suppose there 
exists a positive constant C1 such that, for all meshes chosen, h < Cjh'. Then, under- 
the assumptions of Theorem 2, we have the following estimate for the maximum norm 
of e. There exists a constant C independent o h and 0 such that 

llell. ? c lk1ll3h. 

Proof. Let le': jo I = t Jel lo. Then we have 

Axio Ayowm0(em0 . )2 < Axi Ayiwm(e i)2 = 1je 12. 

Solving for le"': jol, we have from Theorem 2 and the hypotheses that 

Ilell. je7:?j < (Wmo) 
1/2 

l 

lell 
< -2 11013 h 

% (Ax10 Ay0)llh 

< C1C2 Ik1((3 h < C llll3 h. 
h = 

Using the transformation given in [9] which relates the diamond difference ap- 
proximation to the central difference approximation considered in [8] and [9], it is. 
easy to show that the results of this paper apply to the central difference approxima- 
tion when solutions to it exist. The questions of existence of a solution to the central 
difference approximation for the various boundary conditions are considered in. 
[8], [9]. 
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